
Seconde - Chapitre 5

C.1 Dans le plan, on considère les trois vecteurs et les trois
points représentés ci-dessous :
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Une petite remarque :

Pour tracer le vecteur −→
w , il est possible de tracer des représen-

tants des vecteurs −→
v −−→

u .

Par contre, pour tracer un représentant du vecteur 4−→
u +3−→

v ,
il est nécessaire d’utiliser les “coordonnées” des vecteurs −→

u
et −→

v dans ce quadrillage régulier, mais non orthogonal.
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C.9 Voici la représentation de cette figure :

A

B

C

D

E

Pour comparer les deux vecteurs
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utiliser le théorème des milieux, mais nous allons utiliser
l’outil vectoriel pour cette comparaison :
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C.12 Les points A, B, C et D vérifient la relation :

−→
AC − 3 ·

−−→
BD + 2 ·

−−→
BC =

−→
0

D’après la relation de Chasles, on a :
−→
AC − 3 ·

(−−→
BA +

−→
AC +

−−→
CD

)
+ 2 ·

(−−→
BA +

−→
AC

)
=

−→
0

−→
AC − 3 ·

−−→
BA − 3 ·

−→
AC − 3 ·

−−→
CD + 2 ·

−−→
BA + 2 ·

−→
AC =

−→
0

−
−−→
BA − 3 ·

−−→
CD =

−→
0

−−→
AB = 3 ·

−−→
CD

Les vecteurs
−−→
AB et

−−→
CD sont colinéaires.

C.13

A

B

C

M

N

P

On a les égalités suivantes :
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On en déduit que les vecteurs
−−→
MN et

−−→
MP sont colinéaires :

les droites (MN) et (MP ) sont parallèles.

Les droites (MN) et (MP ) étant parallèles et possédant un
point commun, ces deux droites sont confondues : les points
M , N et P sont alignés.
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