Seconde - Chapitre 5

Dans le plan, on considére les trois vecteurs et les trois
points représentés ci-dessous:
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Une petite remarque:

Pour tracer le vecteg @il est possible de tracer des représen-
tants des vecteurs v —u .
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Par contre, pour tracer un représentant du vecteur 4 u +3 vy
il est nécessaire d’utiliser les “coordonnées” des vecteurs u

et v dans ce quadrillage régulier, mais non orthogonal.
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@ On a les égalités: 7:4- i 7:—6-3‘ .
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On en déduit la décomposition de LM :
— — —
LM =4-i —6-j
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® @ w=87+5

® 7=57-37
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@ 7=-287-37
@

- -
=-51+37

Voici la représentation de cette figure:
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Pour comparer les deux vecteurs BC' et DFE, on pourrait
utiliser le théoreme des milieux, mais nous allons utiliser
I’outil vectoriel pour cette comparaison :
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DE=DA+ AFE
Par définition des points D et E:

— — — —
=—-2AB+2-AC =2-BA+2-AC

Factorisons par 2:
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=2.(BA+ AC) =2-BC
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AB = DA+ AC
D’apres la relation de Chasles:
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AB =-CD
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Les deux vecteurs AB et C'D sont opposés: a fortiori, ils
sont colinéaires.
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AD+BD+2CB=0
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(AB+ BD) + BD +2-(CD+ DB) = 0
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AB+2-BD+2.CD+2-DB= 0
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AB+2.CD+ (2-BD +2-DB) = 0
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AB+2CD =0
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AB = —2-CD
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@ Les deux vecteurs AB et CD sont colinéaires.

Les points A, B, C' et D vérifient la relation:
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AC—-3-BD+2-BC=0
D’apres la relation de Chasles, on a:
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AC—3-(BA+AC+CD)+2-(BA+AC):o
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AC—3.-BA-3.AC-3.CD+2-BA+2-AC=0
— — =
~BA-3.CD=0
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AB=3-CD
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Les vecteurs AB et C'D sont colinéaires.
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On remarque que:
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On en déduit que les vecteurs M N et M P sont colinéaires:
les droites (M N) et (M P) sont paralléles.

Les droites (M N) et (M P) étant paralléles et possédant un
point commun, ces deux droites sont confondues: les points
M, N et P sont alignés.
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